ABSTRACT

Every commercial company has the main goal to make profit, but many of them do not remember about the risk they are facing. The more the company grows; the bigger the risk will be. Being protected by insurance companies is the common way to avoid or minimize the risk to several companies. But, how about the insurance companies themselves? Insurance companies have also to have their own protection. And one of the biggest threats should be avoided is the catastrophic risk.

PT Asuransi Central Asia, a private own general insurance company, realizes that the rapid development of information technology can be used as supporting tool to eliminate catastrophic risk and enhance its business process.

The goal this thesis aims at is to secure the company against catastrophic claims and maintain its strength against the risk of bankruptcy. Geographic Information System (GIS) is suitable to meet that need, because it can map and visualize insurance object location faster. GIS also supports the management in making strategic decision; to accept or reject new business or sell it to other insurance companies.

This GIS can be accessed through web, so it can be accessed anytime and from anywhere, because the management is not always in the office. The result of this thesis is a design of GIS prototype that enables the management to monitor limit allocation easily and avoids companies from taking catastrophic risk.

Keywords: Geographic Information System, insurance, catastrophic risk, limit allocation.
TABLE OF CONTENTS

Abstract ... i
Table of Contents .. ii
List of Figures ... v
List of Tables ... vi

Chapter I INTRODUCTION ... 1
1.1 Background .. 1
1.2 Problem Statement .. 3
1.3 Goals and Objectives .. 3
1.4 Scope of Analysis .. 4
1.5 Thesis Structure .. 5

Chapter II THEORITICAL FOUNDATION 7
2.1 Geographic Information System 7
 2.1.1 Definition of GIS .. 7
 2.1.2 Development of GIS 8
 2.1.3 Components of GIS 10
2.2 Insurance ... 12
2.3 Risk .. 13
 2.3.1 Risk Definition .. 13
 2.3.2 Risk Management .. 14
 2.3.3 Catastrophic Risk 15

Chapter III METHODOLOGY ... 17
3.1 Company's Profile ... 17
3.2 Business Model and Process Flow 20
 3.2.1 Business Model .. 20
 3.2.2 Process Flow .. 23
3.3 Research Methodology .. 25
 3.3.1 Preliminary Survey .. 25
 3.3.2 Problem Identification .. 26
 3.3.3 Research Methodology Design .. 26
 3.3.4 Data Collection .. 26
 3.3.5 Determine Current System .. 27
 3.3.6 Design Proposed System .. 27
 3.3.7 Presentation & Questionnaire .. 27
3.4 Prototype Design Methodology ... 28
 3.4.1 Hardware and Software ... 28
 3.4.2 GIS Prototype Development Steps ... 29
 3.4.3 Screen Design .. 30

Chapter IV ANALYSIS AND FINDING .. 32
4.1 Current Limit Allocation System ... 32
 4.1.1 System and Procedure ... 32
 4.1.2 Workflow ... 32
 4.1.3 Analysis Result .. 34
4.2 Proposed Limit Allocation System ... 36
 4.2.1 Limit Allocation Calculation .. 36
 4.2.2 GIS Usage in Correlation with Catastrophic Risk 38
 4.2.3 Proposed System Workflow .. 40
 4.2.4 Comparison of Proposed System with Old System 42
4.3 GIS Application Development ... 43
 4.3.1 Development Stage ... 43
 4.3.2 GIS Architecture .. 43
 4.3.2.1 Software .. 43
 4.3.2.2 Hardware .. 45
 4.3.2.3 Network .. 46
4.4 Applying GIS Application ... 47
4.4.1 Initialization ... 48
4.4.2 Map Mode .. 48
 4.4.2.1 Fire Peril ... 49
 4.4.2.2 Flood Peril ... 49
 4.4.2.3 Claim History .. 49
4.4.3 Query Mode ... 50
4.5 CSF Analysis .. 51
4.6 User Learning Analysis 52
4.7 Cost Analysis ... 53
 4.7.1 Investment .. 56
 4.7.2 Human Resources 57
 4.7.3 Maintenance Cost 58
 4.7.4 Technology Investment Modeling 58
 4.7.5 ROI and NPV Calculation 61
4.8 System Evaluation ... 62

Chapter V CONCLUSIONS AND RECOMMENDATIONS 66
5.1 Conclusions ... 66
5.2 Recommendations ... 67

REFERENCES

BIBLIOGRAPHY

CURRICULUM VITAE

APPENDIX
LIST OF TABLES

Table 4.1 Maximum Limit Allocations Calculations ... 38
Table 4.2 Timeframe of New Business Processing .. 42
Table 4.3 Monitoring Activities ... 42
Table 4.4 Others Activities ... 43
Table 4.5 Claim History .. 50
Table 4.6 Matrix CSF versus Organizational Unit .. 52
Table 4.7 The Estimation of Cost Needed ... 55
Table 4.8 Benefits of Proposed System .. 60
Table 4.9 Questionnaire Result from High-Level Users 63
Table 4.10 Questionnaire Result from Low-Level Users 64
<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Data Input of GIS</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Data Output of GIS</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>The Main Software Components of a GIS</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>The Three Core Functions of an Organizational</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Organizational Structure of PT Asuransi Central Asia</td>
<td>19</td>
</tr>
<tr>
<td>3.2</td>
<td>Context level diagram of Business Model PT ACA</td>
<td>20</td>
</tr>
<tr>
<td>3.3</td>
<td>Level 0 diagram of Business Model PT ACA</td>
<td>20</td>
</tr>
<tr>
<td>3.4</td>
<td>Level 1 diagram of Business Model from Underwriting Process</td>
<td>22</td>
</tr>
<tr>
<td>3.5</td>
<td>Flow Process of Fire Insurance Acceptance</td>
<td>24</td>
</tr>
<tr>
<td>3.6</td>
<td>Research Methodology</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>Current New Fire Business Process Flowcharts</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Map of Insured Object Location</td>
<td>35</td>
</tr>
<tr>
<td>4.3</td>
<td>Proposed New Fire Business Process Flowcharts</td>
<td>41</td>
</tr>
<tr>
<td>4.4</td>
<td>Corporate Network Design for GIS Application</td>
<td>46</td>
</tr>
<tr>
<td>4.5</td>
<td>The Corporate CSFs and Some of the CSFs at One Level Below</td>
<td>51</td>
</tr>
<tr>
<td>4.6</td>
<td>Estimation of Operations Cost Reduction</td>
<td>58</td>
</tr>
<tr>
<td>4.7</td>
<td>ROI and NPV Calculation</td>
<td>61</td>
</tr>
</tbody>
</table>