ABSTRACT

In general, most industries can be described as production systems. These industries transform a set of input, like equipment, raw material and labor, into finished goods. Civilization-development emerges technological development that influence into high technology. This development will make the challenge to increase efficient and effective process. So the organization has the challenge to fulfill demand.

Production factors that have known can be grouped into intelligent or human factors, material factors and machine factors. All of these factors are used to produce from raw material to finished goods. Complexity of equipment depends on the result that they are produced. In great industry, equipment technology that used for their manufacturing process is depended on the accuracy of finished goods.

In manufacturing process and production system of a product in an industry, now used high-tech equipment to help increasing efficiency and process-productivity, so it can increase quality and quantity result.

The common and complexity of equipment that used, after that they needed a good production-planning. One of production process planning is maintenance-systems planning of production-process equipment. A good maintenance-system will pass off smoothly that the planner wanted, because it can reduce breakdown-trouble that can not be forecast.

To improve maintenance division productivity, this Division has implemented Computerized Maintenance Management System (CMMS). This system has capability to help maintenance administration. The result of this system also can increase productivity this division.

After implement this system, there is real difference before using CMMS and after using CMMS.

Keyword: Maintenance, Productivity, CMMS
LIST OF CONTENTS

COVER TITLE i
STATEMENT PAGE ii
APPROVED PAGE iii
FOREWORD iv
ABSTRACT v
LIST OF CONTENTS vi
LIST OF TABLES viii
LIST OF FIGURES ix

CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Problem Formulation 2
1.3 Purpose and Reason 4
1.4 Scope of Study 5
1.5 Thesis Structure 6

CHAPTER 2 THEORETICAL FOUNDATION 8
2.1 Production and Operation Management 8
2.2 Production Process 10
2.2.1 Continuous Flow Process 11
2.2.2 Intermittent Flow Process 12
2.3 Maintenance Management 13
2.4 Maintenance Planning 16
2.4.1 Type of Work to be Planned 17
2.4.2 Job Estimating and Scheduling Techniques 18
2.4.3 Ranking Index of Maintenance Expenditure (RIME) 19
2.5 Computerized Maintenance Management System 20
2.6 Testing Hypothesis 23
2.7 Gap Analysis 27

CHAPTER 3 METHODOLOGY AND DATA 28
3.1 Conceptual Framework 28
3.2 Model 27
3.2.1 Company Profile 27
3.2.2 Maintenance and Power Division 28
3.2.3 Maintenance Procedures 30
3.2.4 CMMS in PT. AMFG 36
3.3 Analysis Technique 41
3.3.1 Population and Sample 41
3.3.2 Collection Method 41
3.3.3 Statistical Analysis 42
LIST OF TABLES

Table 2.1. Statistic technique for testing comparative hypothesis 18
Table 2.2. Condition for using normal and t distribution in testing hypothesis 24
Table 3.1. Rank of Maintenance Works 33
Table 3.2. Maintenance Performance Variable 49
Table 4.1. Result value before and after implementation 52
Table 4.2. Summary of Hypothesis 87
LIST OF FIGURES

Fig. 2.1. Flow process structure .. 11
Fig. 3.1. Conceptual Framework .. 26
Fig. 3.2. Maintenance & Power Division Organization Structure ... 29
Fig. 3.3. Computer configuration in Maintenance Division 37
Fig. 3.4. Work Order Form – Work Order Page 38