Proceedings of

2nd ICSIIT 2010

International Conference on Soft Computing, Intelligent System and Information Technology

1-2 July 2010, Bali, Indonesia

Supported by

MERATUS

APTIKOM

IBM
Proceedings

International Conference on Soft Computing, Intelligent System and Information Technology 2010

Copyright © 2010 by Informatics Engineering Department, Petra Christian University

All rights reserved. Abstracting is permitted with credit to the source. Library may photocopy the articles for private use of patrons in this proceedings publication. Copying of individual articles for non-commercial purposes is permitted without fee, provided that credit to the source is given. For other copying, reproduction, republication or translation of any part of the proceedings without permission in writing from the publisher is not permitted. The content of the papers in the proceedings reflects the authors' opinions and not the responsibilities of the editors.

Publisher:
Informatics Engineering Department
Petra Christian University

Additional copies may be ordered from:
Informatics Engineering Department
Petra Christian University, Siwalankerto 121-131, Surabaya 60236, Indonesia

Cover Art production by Adi Wibowo/Informatics Engineering Department
Using the End-User Computing Satisfaction Instrument to Measure Satisfaction with Web-Based Information Systems ... 315
Dedi Rianto Rahadi

Imaging Technology

Batik Image Classification using Log-Gabor and Generalized Hough Transform Features 320
Laksmi Rahadianti, Hadaiq R. Sanabila, Ruli Manurung, Aniati Murni

Burrows Wheeler Compression Algorithm (BWCA) in Lossless Image Compression 326
Elfitrin Syahrul, Julien Dubois, Vincent Vajnovszki, Asep Juarna

Comparison of Random Gaussian and Partial Random Fourier Measurement in
Compressive Sensing Using Iteratively Reweighted Least Squares Reconstruction 332
Endra

Developing a Video Player Application for Phillips File Standard for Pictoral Data
Format (NXPP): A Project View Approach .. 335
Eko Handoyo, Restiono Djati Kusumo

Development Edge Detection Using Adhi Method, Case Study: Batik Sidomukti Motif 340
Adhi Pranoto, Suyoto

Discriminating Cystic and Non Cystic Mass Using GLCM and GLRM-based Texture Features 346
Hari Wibawanto, Adhi Susanto, Thomas Sri Widodo, S Maesadji Tjokronegoro

Fractal Terrain Generator ... 351
Budi Hartanto, Monica Widiasri, Gunawan Widjaja

From Taiwan Puppet Show to Augmented Reality .. 356
Yang Wang, Bo Ruei Huang, Zih Huei Wang

Generating Iriscode using Gabor Filter .. 362
I Ketut Gede Darma Putra, Lie Jasa

Interpolation Technique to Improve Unsupervised Motion Vector Learning of Wyner-Ziv Video
Coding .. 366

Iris Segmentation and Normalization ... 371
I Ketut Gede Darma Putra, I Nyoman Piarsa, Nazer Jawas

NEATS: A New Method for Edge Detection ... 377
Maria Yunike, Suyoto
Comparison of Random Gaussian and Partial Random Fourier Measurement in Compressive Sensing Using Iteratively Reweighted Least Squares Reconstruction

Endra
Department of Computer Engineering, University of Bina Nusantara
JI K.H. Syahdan No.9 Kemanggisian / Palmerah, 11480, Jakarta, Indonesia
6221-53696930
endraoey@binus.edu

ABSTRACT
Compressive sensing is the recent technique of data acquisition where perfect reconstruction of signal can be made form far fewer samples or measurement than traditional Shannon-Nyquist sampling theorem. Iteratively reweighted least squares (IRLS) reconstruction is a compressive sensing reconstruction algorithm which is a first-order approximation to the p-norm minimization where $0 \leq p \leq 1$. In this paper, We compare the random Gaussian and partial random Fourier (using Discrete Cosine Transform) measurement to encode signal and then reconstruct the signal using IRLS algorithm for various p. From the numerical experiments, random Gaussian and partial random Fourier measurement, both give better reconstruction probability for $p < 1$. Also both of them give almost the same perfect reconstruction probability as function of sparsity and measurement number, just slightly different for some of p value.

Keywords
Compressive sensing, IRLS, random Gaussian measurement, partial random Fourier measurement, perfect reconstruction probability, sparsity number, measurement number.

1. INTRODUCTION
Conventional approaches to sampling signal is using Shannon-Nyquist theorem: the sampling rate must be at least twice the maximum frequency in the signal (the so-called Nyquist rate) [1]. Compressive sensing (CS) is a sensing/sampling paradigm that goes against Shannon-Nyquist theorem. CS asserts that one can recover certain signals and images from far fewer samples or measurements than Shannon-Nyquist theorem use [2][3]. Some potential applications are remote sensing [4], medical imaging [5], and sensor networks [6]. Three main issues in CS are sparsity of signal, CS measurement (Encoding) and CS reconstruction (Decoding). In this paper, signal will be considered sparse in time domain that contain a certain sparsity number which is number of non zero sample in signal. Random Gaussian and partial random Fourier matrices will be used to encode the signal. Both measurement will be compare by measuring the perfect reconstruction probability using Iteratively Reweighted Least Squares (IRLS) algorithms that was proposed in [7],[8].

2. IRLS ALGORITHMS
Consider an $M \times N$ measurement matrix Φ, where $M < N$, is used to encode signal x, result $y = \Phi x$, the vector of M measurements of an N dimensional signal x. One of widely known reconstruction algorithm is minimum ℓ_1 norm reconstruction:

$$\min_{x'} \|x\|_1, \text{ subject to } \Phi x' = y$$

(1)

If measurement matrix, Φ, is random Gaussian distributed, there is a constant C such that if the sparsity of x has size K and $M \geq CK \log(N/K)$, then the solution to (1) will be exactly $x' = x$ [9], [10]. In [7] and [8] propose that ℓ_1 can be replaced with the ℓ_p norm, where $0 < p < 1$.

$$\min_{x'} \|x\|_p^p, \text{ subject to } \Phi x' = y$$

(2)

In the case $p < 1$, IRLS can be used for solving (2) by a replace the ℓ_p objective function in (2) by a weighted ℓ_2 norm [11]:

$$\min_{x'} \sum_{i=1}^{N} w_i \|x_i\|^2, \text{ subject to } \Phi x' = y$$

(3)

The Eq. (2) can be written as:

$$\min_{x'} \sum_{i=1}^{N} \|x_i(n-1)\|^{p-2} x_i^2, \text{ subject to } \Phi x' = y$$

(4)

where the weights, w_i, are computed from previous iterate $x_i(n-1)$, so that the objective in (3) is a first-order approximation to the ℓ_p objective: $w_i = \|x_i(n-1)\|^{p-2}$. The solution of (3) can be given explicitly, giving the next iterate $x_i(n)$ [8]:

$$x_i(n) = Q_n \Phi^T (\Phi Q_n \Phi^T)^{-1} y$$

(5)
where Q_n is the diagonal matrix with entries

$$1/w_i = \left|x_i^{n-1}\right|^2 \frac{p}{2} - \epsilon.$$

Using a small $\epsilon > 0$ to regularize the optimization problem, w_i become:

$$w_i = \left|x_i^{n-1}\right|^2 + \epsilon$$

(6)

3. NUMERICAL EXPERIMENTS

The Eq. (5) will be solved numerically using various parameters of sparsity number K, number of measurement M using random Gaussian that is set to be orthonormal and partial random Fourier matrices (in this paper using Discrete Cosinus Transform (DCT) matrices) and p. The fix sample number N of signal x is 500 that has the sparsity number K which is chosen randomly with values 1 or -1 from a Gaussian distribution and using the sign function. Every experiment using certain parameters will be repeated 100 times to measure the perfect reconstruction probability. ϵ is initialized to 1 and $x^{(0)}$ initialized to the minimum 2-norm solution of $Ax = y$. The iteration (5) with w_i as in (6) is run until the change in relative 2-norm from the previous iterate is less than \(\sqrt{\epsilon} \), at which point ϵ is reduced by a factor 10, and the iteration repeated beginning with the previous solution. This process is continued through a minimum ϵ of 10^{-5}. The reconstruction is said to be perfect if mean squared error between x and x' less than 10^{-3}. In this paper, we are considering $0 \leq p \leq 1$.

Figure 1. Perfect reconstruction probability as a function of K using random Gaussian measurement.

Figure 2 shows the perfect reconstruction probability using random Gaussian measurement as a function of M in ratio of measurement numbers ($RMN = (M/N) \times 100\%$ for $K = 10$, $p = 0, 0.2, 0.5, 0.8,$ and 1. We can see again for $p < 1$ give better result than $p = 1$, where for $p < 1$ perfect reconstruction can achieve 100% at $MNR = 14\%$ while for $p = 1$ need until $MNR = 18\%$. For $p < 1$ give almost the same results but the best is again at $p = 0.8$, and for all reach 100% perfect reconstruction when $MNR = 18\%$.

Figure 2. Perfect reconstruction probability as a function of RMN using random Gaussian measurement.

Figure 3 shows the perfect reconstruction probability using partial random DCT measurement as a function of K for $M = 100$ (20%), $p = 0, 0.2, 0.5, 0.8$, and 1.

Figure 3. Perfect reconstruction probability as a function of K using partial random DCT measurement.

Figure 4 shows the perfect reconstruction probability using partial random DCT measurement as a function of RMN for $K = 10$, $p = 0, 0.2, 0.5, 0.8$, and 1.

Figure 4. Perfect reconstruction probability as a function of RMN using partial random DCT measurement.
4. CONCLUSIONS

From the results above, we can conclude that random Gaussian and random partial Fourier (DCT) measurement both give better perfect reconstruction probability for $p < 1$. Also both of them give almost the same perfect reconstruction probability as function of K and RMN, just slightly different for some of p value.

5. REFERENCES