Lecture Notes in Artificial Intelligence

9622
Proceedings, Part II
Da Nang, Vietnam, March 14–16, 2016
8th Asian Conference, ACIDS 2016

Intelligent Information Systems

Hamido Fusha, Tzung-Pei Hong (Eds.)
Ngoc Thanh Nguyen, Bogdan Träwinski
This publication is printed on acid-free paper.

Published on acid-free paper.

The publisher undertakes to issue corrected editions of any errors or omissions that may have been made.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher.

The publisher cannot be held responsible for any expressions or opinions of the authors or contributors contained in this book.

This work is subject to copyright. All rights are reserved by the publisher, whether the whole or part of the material is concerned. Except for material in which copyright is vested, no part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher.

ISSN 1111-3349 (electronic)
ISSN 0020-9743
DOAJ 10.1007/732-3-662-49390-8
ISSN 978-3-662-49392-2
ISSN 978-3-662-49390-8 (eBook)

Library of Congress Catalog Number: 2016390675

SNS Publishers SL - Artistic Intelligence

Tawun
Koobun
Nakomi University of Koobun
Taipei, Taiwan
Poland
Wrocław University of Technology
Bohdan Twarda
Poland
Wrocław University of Technology
Hoang Phuc Nguyen
Edinburgh
Prelace
THUN-PEI HONG
Haminh Phuoc
Po-cken Lam
Neo Thanh Nguyen
March 2016

Thank you to many experts who contributed to making the event a success.

Input of this conference would not have been possible without their support.

We cordially thank all the authors for their valuable contributions and other part.

We cordially thank all the members of the Organizing Committee for their excellent work.

We wish to thank the members of the Organizing Committee for their very superb proceedings and all our other sponsors for their kind support.

We especially thank our main sponsor, Vietnam’s primary sponsor, the Hardware Industry Association of China, and the International Association of World-Class Students.

We also would like to express our thanks in the keynote speakers (from THUN-PEI Hong, Po-cken Lam, and Neo Thanh Nguyen).

We would like to express our sincere thanks to the honorary chairs, Mr. Thanh Hong, Mr. Po-cken Lam, and Dr. Neo Thanh Nguyen.

We especially thank our special sponsors, the Honorary Chairs, special session chairs, division chairs, and the Organizing Committee for their work.

Our special thanks go to the program chairs, special session chairs, and the Organizing Committee.

The support you provide was essential and significant to the success of the conference.

We thank you for your support and honorable participation over the conference.

We would like to extend our heartfelt thanks to Mr. Jaslow Cowan, the Deputy Prime Minister of the Republic of Poland and Minister of Science and Higher Education.
Conference Organization

Liaison Chairs

Hemantaka
Kozierewicz

Khanh Van Hoang

Publicity Chairs

Bay Vo
Lech Machek

Dariusz Kiel

Special Session Chairs

Vietnam

Tom Duc Thuong University, Vietnam

Wroclaw University of Technology, Poland

Wroclaw University of Technology, Poland

Vietnam-Korea Friendship Information Technology College, Vietnam

Program Chairs

Duong Nguyen
Hamido Fujita

Tung-Phu Hone
Bogdan Trzewicki

General Chairs

Bao Hung Hoang

Ngoc Tuan Nguyen

Honorary Chairs

Vi Hong Nguyen

Tadeusz Wiczkowski

Vietnam Posts and Telecommunications Institute of Technology,

Bina Nusantara University, Indonesia

Tan Hanch
Ford Luneman Gao

Vietnam
Steering Committee

Jarek Bemeda, Poland

Webmaster

Le Thu Thanh, Vietnam

Local Organizing Committee

Erik Gabriel, Poland

Organizing Chairs

Ali Saeed, Malaysia

Conference Organization
Special Sessions Organizers

Adam Mickiewicz University in Poznan, Poland
Piotr Wierzchon

City University of Hong Kong, Hong Kong SAR, China
Jun Wang

Deakin University, Victoria, Australia
Tezence Ahmend

National University of Kaohsiung, Taiwan
Tsung-Pei Hong

Keynote Speakers

Ali Selamat

Istecz Rukowski

Kyojo University, Japan
Toyoda Nishida
International Program Committee

University of Malaysia, Malaya
S.M.N. Ahmad

University of Malaya, Brunei
Em-Hasnan Abhazari

University of Brunei Darussalam, Brunei
M. Hāfiq Abūhain

University of Malaysia, Malaysia
Gabriela Pass

University of Science and Technology USM, Penang
Hamza Drah

Problems (CIWCPR 2016)

12. Special Session on Smart Pattern Recognition for Sports (SPRS 2016)

University of Milano-Bicocca, Italy
Pierluigi Romano

University of Science and Technology USM, Penang
Hamza Drah

Problems (CIWCPR 2016)

11. Special Session on Computational Intelligence in Data Mining for Complex

National Institute for Applied Science – Rennes, France
Le Tho Huan An

University of Lorraine, France
Le Tho Huan An

Systems Database Systems, and Industrial Systems (MOD 2016)

University of Science, VNU-HCM, Vietnam
Bac Le

National University of Kaohsiung, Taiwan
Tzung-Pei Ho

National University of Kaohsiung, Taiwan
Tzung-Pei Ho

10. Special Session on Modelling and Optimization Techniques in Information

University of Science, VNU-HCM, Vietnam
Bac Le

National University of Kaohsiung, Taiwan
Tzung-Pei Ho

National University of Kaohsiung, Taiwan
Tzung-Pei Ho

ADVIFA 2016

9. Special Session on Advanced Data Mining Techniques and Applications

Aletheia University, Taiwan
Kuo-Shing Lin

Aletheia University, Taiwan
Chao-Fu Hone

Aletheia University, Taiwan
Chao-Fu Hone

Opportunities, E-Learning, and Fuzzy Intelligent Systems (CIEEE 2016)

8. Special Session on Collective Intelligence for Service Innovation, Technology

Adamie Polanka

Georgia Tech, USA
Jakh Ziegen

Polish-Japanese Academy of Information Technology,
Marek Kub Privacy

Polish-Japanese Academy of Information Technology,
Konrad Volczykowski

In The Science (IMNS 2016)

7. Special Session on Analysis of Image, Video, and Motion Data
Multiple Model Approaches to Machine Learning (WMAL 2016)

Program Committees of Special Sessions

Conference Organization
Special Session on Intelligent Services for Smart Cities (IS4S 2016)

Speaker: Son Nguyen, University of Technology, Vietnam

Chair: Tran Quoc Hien, Polytechnic Institute, Vietnam

Organizer: Anh Tran, University of Technology, Vietnam

Venue: Shangri-La, Hanoi, Vietnam

Program:

Session 1: Introduction and Overview

Session 2: Case Studies and Applications

Session 3: Future Directions and Challenges
Special Session on Intelligent and Context Systems (ICXS 2016)

Heike Taschmann
Guang Tan

EMACS University, Germany
Erichs, University of Munich, Germany
Erichs, University of Munich, Germany
Technical University of Poznan, Poland
Deals, AC, Koblenz, Germany
Benedikt, University of Applied Sciences, Berlin, Germany
Manchester Business School, UK
Telematics University of Vietnam, Vietnam
University of Pretoria, South Africa
University of Waikato, New Zealand
University of Malta, Malta
University of Toulouse, France

Ahmed Besbes
Christopher Holdfield
Birgit Hoelter
Seth Dunham

Special Session on Intelligent Data Explanation (IDDE 2016)

Shawmri Zaidany
Adam Pease
Mark Last
Maria Hernandez
Thierry Chavan
Amirialah Dehsens

School Research Institute, Polish Academy of Sciences,
University, Hong Kong SAR, China
R&D Management, Hong Kong Polytechnic
Be'arzion University, The Negev, Israeli
University of Noty, Saudi Arabia
Wroclaw University of Technology, Poland
Unguius University, Tehran, Iran
University of Technology, Malaysia

Somsri

Special Session on Ontology-Based Software Development (OSD 2016)

Peera Boontham
Jose Maria

University of Makati, Japan
King Mongkut's Institute of Technology Ladkrabang,
Bangkok Thailand

Conference Organization
XX
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jakub Segen</td>
<td>Giełbądzka TEC, USA and Experimental Therapy, Poland</td>
</tr>
<tr>
<td>Joanna Rosowska</td>
<td>Academy of Sciences, Institute of Immunology, Poland</td>
</tr>
<tr>
<td>Andrez Pospiech</td>
<td>Warsaw University of Technology, Poland</td>
</tr>
<tr>
<td>Fabia Pelenkowska</td>
<td>Warsaw University of Technology, Poland</td>
</tr>
<tr>
<td>Jerzy Paweł Nowacki</td>
<td>Polish-Japanese Academy of Information Technology, Poland</td>
</tr>
<tr>
<td>Alexander Naviera</td>
<td>Warsaw University of Technology, Poland</td>
</tr>
<tr>
<td>Marek Kubicki</td>
<td>Warsaw University of Technology, Poland</td>
</tr>
<tr>
<td>Julia Kulmbacka</td>
<td>Warsaw University of Technology, Poland</td>
</tr>
<tr>
<td>Krysian Kowara</td>
<td>Warsaw University of Technology, Poland</td>
</tr>
<tr>
<td>Herko Justinski</td>
<td>Warsaw University of Technology, Poland</td>
</tr>
<tr>
<td>Adam Gudyński</td>
<td>Warsaw University of Technology, Poland</td>
</tr>
<tr>
<td>Marcin Pólicki</td>
<td>Warsaw University of Technology, Poland</td>
</tr>
<tr>
<td>Adolfo Baranowa Drabik</td>
<td>Warsaw University of Technology, Poland</td>
</tr>
<tr>
<td>Leszek Cichowelski</td>
<td>Warsaw University of Technology, Poland</td>
</tr>
<tr>
<td>Amrit Baj</td>
<td>Warsaw University of Technology, Poland</td>
</tr>
</tbody>
</table>

Special Session on Analysis of Image, Video, and Motion Data in Life Sciences
XXII Conference Organization
Problems (CIDMC2016)

Special Session on Computational Intelligence in Data Mining for Complex Systems (MCIT 2016)

Special Session on Models and Optimization Techniques in Information Systems, Database Systems, and Industrial Systems (MCIT 2016)

Vo Thi Ngoc Chun
Ho Chi Minh City, Vietnam
Ho Chi Minh University of Industry, Ho Chi Minh City, Vietnam

Vo Ha Nam
Hanoi, Vietnam
Hanoi University of Industry, Hanoi, Vietnam
University of Delaware, USA
Kyushu University, Japan
National University of Singapore, Singapore
University of Nottingham, Malaysia
Osaka Electro-Communication University, Japan
SAR, China
The Hong Kong Polytechnic University, Hong Kong
Monash University, Malaysia
Pohang University of Science and Technology, Korea
Kingston University, UK
University of Manitoba, Canada
MIR Labs, USA
London South Bank University, UK
National University of Singapore, Singapore
CJU University, Japan

William C. Rose
Tsyoshi Takagi
James Koh Cho Hong
T. Namda Kumar
Toshiro Tanimura

Aaron Lunte
David Couwenaar
Tadashi Ishihara
Seigo Velashin
James F. Peers
Ailin Ahrens
Ewan Ellingshede
Michael Yu Wang
Miguel Sasaki

Special Session on Smart Pattern Processing for Sports (SPS 2016)

Ning Zhong Mei Bashi
Patrick Viallon
Thomava Tepedal
Lachman Sals
Houman Saboungi
Lee Peng Rho

Conference Organization
Contents - Part II
174

Tzung-Pei Hsueh, Min-Thu Wu, Tom-Kang Li, and Chun-Hao Chen

Mining Depth of Fuzzy Membership Functions

Philip Barndorff-Nielsen, Mads Kjærulff, and Ludvig Coupe

Kan-In Doring, Deep Lam, Poosucksak Khunthong, and Suthep Chaitongwate

Improving the Performance of Collaborative Filtering

179

Tzun-Tsyng Wu, and Tzung-Pei Hsueh

Jerry Chen-Wei Lin, Xiaobiao Li, Philippe Pommersheim-Yiger,

Effective Mining of Fuzzy Fregattian Hierarchies with Type-2 Membership Functions

4-Huawe Su and Ting-Ye Li

Similarly, An Item-Based Music Recommendation System Using Music Content

Jan Jonker, Per Cässén, Paul Dehnstedt, and Michael Raski

P4R Human Activity Recognition Based on a Massively Parallel Learning Framework and Parallel Algorithms

159

Lara C. Michalska

Learning Algorithms Against All Collinear Patterns

147

Evaluating Classification

A Lossless Representation for Association Rules Satisfying Multiple Advanced Data Mining Techniques and Applications

Branislav Kovan, Zvonimir Vukas

Hybrid One-Class Ensemble for High-Dimensional Data Classification

Adnan Nigam and Nisheeth V. Chawla

Link Prediction in a Semi-Supervised Network for Recommendation

Linda Bosker, and Jan Kosek

Adapting an Outlier Algorithm with PheroMone

and Preprocessing Knowledge

Lukas Abraham, Roman Kudlicka, Tommaso Kudlacek, and Jan Kosek

with an Ensemble Methods

Prest and Accurate - Improving Location-Based Semihuman Classification

Leszek Bukowski, Oscar Jaczk, and Roman Kudlicka

Roman Buniaryk, Tommaso Kudlacek, Adam Wiszniak

Boilingman Machine

Cooperation Prediction in Gifted Developers' Network with Restricted
A New Coarse Similarity Mining Model for Inferior Design Drawing

Collective Intelligence for Service Innovation, Technology Opportunity

Traffic Quotient, Normal Traffic, Alice Traffic, and Hidden Channel

Theoretical Analysis of Workload Impedance Minimization Problem on

and Past Behavior

Minimizing Component Times by Mixed Integer Linear Programming Models

Solving a Makespan Jobs Scheduling Problem in Minimum Total Weighted

Meta-Algorithm: A New Algorithm for Frequent Pattern Detection

A New Betweenness Centrality Algorithm with Local Search

An Efficient Algorithm for a New Constrainted TCS Problem

and Van Hoang The Khanh

Viet Nam Ngoc Hue, Hong Dao, Chen Tin Quoc, Van Quoc, Le Thanh

Sink Toward Source Algorithm Finding Maximal Flows on Extended

Computational Intelligence in Data Mining for Complex Problems

Josh-Ju-Ching Yung and Ja-Hwang Su

On Velocity-Preserving Transfer of Similarity

Hong-Quynh Le, Ha-Chuan Nguyen, and Quang-Tuy Ha

An Experimental Study on Chinese Model in Hanoi

and Liang-Pei Hsu

Jerry Chun-Wai Lin, Wensheng Guan, Philippe Rousselle-Viger,
Real World Applications in Engineering and Technology

Mariusz Dombois, and Aleksander Nowak

Real Time Thermogram Enhancement by FPGA-Based Convex Steepest.

487

and Aleksander Nowak

Mariusz Dombois, David S goal, Jan Kwikowski, Karol Jędrysiak.

Efficient Motion Magnification

477

Damian Pazar, Michal Stęszewski, and Marzena Wójcikowska

Facial Recognition on the Basis of Video Surveillance System for the

and Marzena Wójcikowska

Jadwyl Segan, Kamil Wereszczyński, Marzena Kubacka, and Ark Bąk.

Learning Artificial Models of Joint Anomalies from Ultrasound Images.

458

and Ark Bąk

Mark Kubacka, Kamil Wereszczyński, Jadwyl Segan, and Michal Stęszewski.

Video Editor for Anomalous Human Actions and Object Trajectories.

477

and Kamil Wereszczyński

Anir Bāk, Mark Kubacka, Jadwyl Segan, David Stęszewski.

Recent Developments on 2D Pose Estimation From Modular Images.

437

Contents – Part II
Intelligent Services for Smart Cities

Rajeev Verma, Mridula Srivastava, and Manohar Arora

An Embedded Intelligence-Based Knee Trajectory System for Knee Friction Analysis

Tomoko Masaoka, M. N. A. N. R. N. A. and Manohar Arora

An Embedded Intelligence-Based Knee Trajectory System for Knee Friction Analysis

Smart Pattern Processing for Sports

N. N. R. N. and S. A. A. C. G. E. A.

Optimization of Query Processing with Multilevel Storage

L. A. E. M. H. and S. A. A. C. G. E. A.

IOB-Linear Hashing, Indexing and Efficient Lookup Query Expansion

Robust Optimization for Clustering

H. T. T. T. T. T. E. S. T. H. C. E. A.

Online DC Optimization for Online Binary Image Classification

Bees and Pollen with Communication Strategy for Optimization

Comms – Part II
Author Index

93

Martin Luecher and Basir Chock

782

Comparison of Slope Detection Approaches for Suburban Area

911

Genele Algunhkim

Model of a New Method for Calibrating Gas-Li-Herman-Rothe-Car-Following

Index

773

A New Method for Calibrating Gas-Li-Herman-Rothe-Car-Following
Part I

Contents

Knowledge Enrichment and Semantic Web
A Method for Determining Representations of Ontology-Based User Profiles

and Tran-Hieu Phan

Phong-Nam Tran, Tran Duc Ngoc, Tran Thanh Quang-Yeu, and Ngoc Thanh Tran

Identification of Vietnamese in Vietnamese Spoken Language Commands

Aung Tho Le and Anh-Viet Nguyen

Identification of Prepositional in Vietnamese Language.

The-Thuong Nguyen, Tran Thanh Quang-Yeu, and Tran-Nam Tran

Application in Smart Mobile Speech Interaction

Text-to-Speech (TTS) Synthesis

Design of a Vietnamese Language Speech Corpus for the Purposes of

Nhu Thanh Doan, Danh Quyen, and Cao Hoa Trung

Approaching Tone-Related Aspect-Based Sentiment Analysis Using Hybrid

Pham Wei植

Methods for Language Chondrozation

Big Data in Computational Linguistic Research in Search of Optimum

Alfaza Yusof, Abdul Hameid, and Takeo Yokoi

Interfaced Feature Selection Methods Using Meandric Algorithms

Text Processing and Information Retrieval

Khalil Al-Ajar, Mohammad Al-Ajar, and Housam Al-Ajar

Recommender Systems

Empirical Analysis of the Relationship Between Trust and Ratings in

Nguyen Thanh Tuan, Huyn Hoa Nguyen, and Nguyen Thanh Nguyen

A Mobility Prediction Model for Location-Based Social Networks.
Using a Cloud Computing Technology Service to Assess Pass Snips

Power P. Yogeshwar, Jean-Cristophe Nebel, and Maheswaran Rangan

Mechanisms of Diseases of Civilization: A Tool for Studying

A Model for Analysis and Design of Information Systems Based on a

Shafi Huang, Niten Passman, Kaushik Kannan

Improving Business Prediction Accuracy by Using Machine Learning

Responses Web Design: Testing Usability of Mobile Web Applications

Qiang Yu, Nguyen and Tech Madsen

Properties of Generalized Higher Order Quadratic

An Empirical Comparison of Three Techniques to Drive Development of New Test Cases:

Bogumila Halkowska and Marian Wolschanka

Extraction of Sequential Business Rules from C#.

Florian Stich and Günther Vossen

Data Quality Scores for Predicting on Data Marketplaces

Database Systems and Software Engineering
Zhangwei Hu and Jialun Weng

for Modelling of Control Systems. Peni Neis with Lukasiewicz Norns

and Ten-zi Pan

Multimodal Optimization. Jia Kuang Pan, Th-Kien Dao. Tung-Thu Nguyen, Shiu-Chun Chu

Dynamic Diversity Population Based Flower Pollination Algorithm for

Martin Augenstein, Jan Kubiček, Martin Černý, and Marie Bačová

Model K-NN Function in Stabilizing of Blood Pressure

Michal Krejsla, Damian Borna, and Andrey Svetnik

Anurag N. Singh - Mixed Spatial Evolutionary Game Approach

Peclo, M. & Michaluk, L.

Formal a Priori Power Analysis of Elements of a Communication Graph

Martin Copper, Jakub Nakapa and Marcin Dudański

How to Create Benchmarks for Rich Routing Problems?

Jacek Nakapa and Mosiaw Blocho

Enhanced Clique Election Search for the Pickup and Delivery Problem

Pomjakův, P., Kramer, J., & Schmidt, J.

Interpreted Peni Neis in DES Control Syntheses

Decision Support and Control Systems

Machin Nedaška

Knowledge in Asynchronous Social Group Communication

and Mohd Zulham M. Yusoff

Morgan A. Mahmood, Mohd Suhbuuddin Aminud, and

A Norm Assumption Approach for Multi-agent Systems in Heterogeneous

Machin, Hennes

Business Organization's Integrated Information System

and Perszalowski Kazimiera

Towards the Treadset Between Online Marketing Resources Explanation

Towards the Treadset Between Online Marketing Resources Explanation

XXXVI / Conmens - Part I
Multiple Kernel Based Collaborative Fuzzy Clustering Algorithm

A New Similarity Measure for Multilingual Fuzzy Sets

Self-paced Learning for Imbalanced Data

SVM Based Ligue Red Color Predictors Using MicroRNA Expression

Tree Mining with Traditional Algorithms and Many Classes

Recursive Ensemble Land Cover Classification with Little Training Data

On Random Generation of Population of Minimal Phase and Stable

Machine Learning and Data Mining

Controllability of Semilinear Discrete Systems

Common-Knowledge and KP-Model

Framework for Product Innovation Using SEOKS and Decisional DNA

Information of Collective Knowledge in Functional Decision Support System

Dual Equivalent Dual and Slalom Korokon

ALIM Solver for Combinatorial and Discrete Optimization

Error Notification Long Time No Go and Willard Peduze

Home Nguyen
Traffic confliction can also be reduced by traffic management. To yield good traffic confliction, an effective number of research workers [4,6] have been conducted on the topics of a...
The following transformation is used to map the data from the perspective view to an orthographic view using an orthographic projection.

The following procedure: First, the vehicle position in the image is used to produce images of the vehicle movement. Second, the camera vision is used to capture the vehicle movement in the perspective view. Third, the data is processed and the lane from the perspective view is positioned at a straight line.

The current proposal is only suitable for vehicle moving along a straight line.
(3)\[L^{-1} \cdot L = 1 \]

The transformation can be directed from the perspective plane to the road plane by \(L^{-1} \cdot L \). By \(L^{-1} \cdot L = 1 \), the transformation is to be done in two steps: first, transformed to the perspective plane, and then transformed to the road plane. We can map points on the perspective plane to the road plane.

Now, we consider the plane, the perspective plane \(\mathcal{P} \), the unit plane \(\mathbb{S}^1 \), the 2D plane.

\[\text{Image of the transformation matrix } L^{-1} \cdot L \text{ can be direct by } \mathcal{P} \text{ to the road plane } \mathcal{R} \text{ of the perspective plane } \mathcal{P} \text{ to the road plane } \mathcal{R} \text{ with the square } \mathcal{S}_1 \text{ to the inverse transformation function } \mathcal{L}^{-1} \cdot \mathcal{L} \text{ in the second step. The perspective plane } \mathcal{P} \text{ is transformed to the unit square } \mathcal{S}_1 \text{ by the inverse transformation.} \]

In the first step, the perspective plane \(\mathcal{P} \) is transformed to the unit square \(\mathcal{S}_1 \) by the inverse transformation. We can project any point on the plane to the \(\mathcal{S}_1 \) plane by the inverse transformation.

\[\begin{align*}
1 \cdot x &= x \\
1 \cdot y &= y \\
1 \cdot z &= z \\
L^{-1} \cdot L &= 1 \\
\end{align*} \]

\[\begin{align*}
\frac{(\frac{\partial \mathcal{L}}{\partial \mathcal{L}}) \cdot (\frac{\partial \mathcal{P}}{\partial \mathcal{L}})}{(\frac{\partial \mathcal{L}}{\partial \mathcal{L}}) \cdot (\frac{\partial \mathcal{P}}{\partial \mathcal{L}}) + (\frac{\partial \mathcal{P}}{\partial \mathcal{L}}) - (\frac{\partial \mathcal{L}}{\partial \mathcal{L}}) \cdot (\frac{\partial \mathcal{P}}{\partial \mathcal{L}})} &= \frac{\partial \mathcal{L}}{\partial \mathcal{L}} \frac{\partial \mathcal{L}}{\partial \mathcal{L}} + (\frac{\partial \mathcal{P}}{\partial \mathcal{L}}) - (\frac{\partial \mathcal{L}}{\partial \mathcal{L}}) \cdot (\frac{\partial \mathcal{P}}{\partial \mathcal{L}}) = \frac{\partial \mathcal{L}}{\partial \mathcal{L}} \\
\end{align*} \]

where

\[\text{Fig. 1. Perspective mapping from the unit square } \mathcal{S}_1 \text{ to an arbitrary quadrilateral.} \]

\[\text{Fig. 2. Two-step perspective transformation between perspective plane and road plane.} \]

A New Method for Calibrating Gaze-Human-Robot Interaction Following Model
All data $\mathbf{u}^{\text{in}}, \mathbf{v}^{\text{in}}$ are from the current proposed method.

$$
\frac{\mathbf{P}_t - \mathbf{P}_0}{\mathbf{v}_0} \cdot \mathbf{v}_t = t
$$

In addition, we also compute the vehicle's coefficients in and by minimizing

sampling time of 0.1's 25 fps and image size of 720 x 720 pixels. The accelerometer recorded at the vehicle's movement was recorded by two means: a video camera and an orthophotograph.

Figure 3. The test vehicle initial and final positions and the four cones used for

3.5 in distance laterally.

Figure 3. These four cones were separated by 22.9 in distance longitudinally and see Fig. 3. These four cones were placed on the four corners of the vehicle for accuracy.

Position, Frontal position, Frontal position, Frontal position. Figure 3 respectively show the vehicle's initial and final position of a straight trajectory for a distance around 23m. It was difficult to control the vehicle's trajectory. The experiment only involved a vehicle. The vehicle was set to travel

The proposed method was evaluated with a simple experiment described for-

Experimental Procedures

where that is obtained from the accelerometer.

$$
\% \text{Relative Error} = \frac{\left\| \mathbf{x} - \mathbf{x}_0 \right\|}{\left\| \mathbf{x} \right\|} \times 100\% \text{ Relative Error}
$$

Simultaneous 1 - Relative Error, where the error is defined by

In the current work, the vehicle movement is also recorded using an

data, the relative error is defined by Eq. 4.

Table 1: The relative error of the tracked vehicle position by the computer vision techniques.

<table>
<thead>
<tr>
<th>Position (in m)</th>
<th>Relative Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>0.6</td>
<td>1.1</td>
</tr>
<tr>
<td>0.9</td>
<td>1.2</td>
</tr>
</tbody>
</table>

In the 6° we compare the vehicle acceleration between the 2D and 4×3% vehicle acceleration and 88.9% vehicle accuracy, respectively. The results have been computed for every experiment, see Table 1. The results for the current study are shown in Fig. 4 for the multilayer algorithm and Fig. 5 for the single-layer algorithm. The relative error of the current study is 1.8% in width, and 1.8% in height.

The frame rate is equal to 25 fps. Only one vehicle is used in the experiment, and the frame rate is associated with the frame number by:

\[
\text{Frame Rate} = \frac{\text{Frame Time} \times \text{Frame Number}}{\text{Time}}
\]

Two different background subtraction methods, the second set is from the accelerometer.

Two sets of data are necessary for this study. The first set is obtained from the developed computer-vision-based vehicle tracking method. The second set is from the accelerometer.
Background subtraction algorithm and from accelerometer for six experimental repetitions.

Fig. 4. Comparison of space-time diagram obtained from computer vision (model).

Fig. 5. Comparison of space-time diagram obtained from computer vision (model).

References

4 Conclusions

Fig. 6. Comparison of the Vehicle Acceleration between Accelerometer Data and GRP

A New Method for Calibrating Car-Human-Rotation Car-Following Model