Abstrak

Perkembangan teknologi digital telah mengakibatkan maraknya penggunaan kamera digital. Masalah yang muncul adalah ukuran file (1) image (gambar) yang dihasilkan. Hal ini menyebabkan meningkatnya kebutuhan terhadap kapasitas media penyimpanan, karena itu dibutuhkan program aplikasi kompresi gambar untuk menghemat kapasitas media penyimpanan. Karena itu penulis merasa perlu untuk mengusulkan suatu program aplikasi kompresi gambar yang bersifat (2) lossy compression agar diperoleh ukuran file terkompresi yang lebih kecil namun tetap dapat menjaga kualitas gambar.

Adapun algoritma yang digunakan dalam metode kompresi gambar pada perancangan program aplikasi ini adalah algoritma Quadtree Partitioned Iterated Function System. Metode penelitian yang dilakukan adalah metode perancangan, yang dibagi dalam beberapa tahap, yaitu perancangan modul, perancangan flowchart, perancangan STD (State Transition Diagram), dan perancangan layar.

Setelah dilakukan proses implementasi, maka dapat disimpulkan bahwa penggunaan metode (3) Quadtree Partitioned Iterated Function System (QPIFS) untuk melakukan kompresi citra akhirnya dapat mereduksi ukuran file citra jauh lebih kecil dari ukuran aslinya dengan tetap menjaga kualitasnya. Dapat dilihat pula bahwa proses kompresi membutuhkan waktu lebih lama dibandingkan dengan proses dekompresi. Oleh karena itu algoritma kompresi ini sangat baik digunakan pada aplikasi yang lebih banyak melakukan proses dekompresi.

Kata Kunci:
Image, lossy compression, Quadtree Partitioned Iterated Function System
KATA PENGANTAR

Segala hormat dan pujian serta rasa syukur kepada Allah Bapa yang Maha Kuasa atas perlindungan dan kekuatan yang diberikan kepada penulis, sehingga penulis dapat menyelesaikan skripsi yang berjudul “Perancangan Program Aplikasi Kompresi Gambar Menggunakan Algoritma Quadtree Partitioned Iterated Function System” sebagai salah satu syarat untuk menyelesaikan jenjang studi Strata-1 di Universitas Bina Nusantara, Jakarta.

Dalam kesempatan ini penulis ingin mengucapkan terima kasih kepada:

4. Prof. John C. Hart dari Washington State University, atas bantuannya melalui korespondensi dengan e-mail.
5. Pihak-pihak lain yang telah membantu dengan memberikan informasi, ide dan korespondensi kepada penulis dalam pembuatan skripsi ini.
6. Orang tua, keluarga dan teman yang memberikan dukungan moril dan materiil.

Penulis menyadari bahwa karena keterbatasan sumber literatur, hasil yang dicapai masih jauh dari sempurna, oleh karena itu penulis bersedia menerima kritik dan saran yang membangun dari semua pihak, khususnya dari para dosen. Akhir kata, penulis berharap agar skripsi ini dapat bermanfaat bagi pembaca dan pihak-pihak yang membutuhkan, sehingga hasil yang diperoleh dapat disempurnakan dan lebih berguna untuk masa mendatang.

Jakarta, Januari 2006

Penulis
<table>
<thead>
<tr>
<th>Bab</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bab 1</td>
<td>PENDAHULUAN</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Rumusan Perancangan</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Ruang Lingkup</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>Tujuan dan Manfaat Perancangan</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>Metodologi Perancangan</td>
<td>4</td>
</tr>
<tr>
<td>Bab 2</td>
<td>LANDASAN TEORI</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Gambar Digital</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>RAW</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Kompresi Gambar</td>
<td>8</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Lossy compression</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Fractal</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Fractal image compression</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>IFS (Iterated Function Systems)</td>
<td>13</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Transformasi Affine</td>
<td>14</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Self Similar</td>
<td>15</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Similitude</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>PIFS (Partition Iterated Function Systems)</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>QPIFS (Quadtree Partition Iterated Function Systems)</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>Himpunan</td>
<td>19</td>
</tr>
<tr>
<td>2.10</td>
<td>Dimensi Topologi</td>
<td>20</td>
</tr>
<tr>
<td>2.11</td>
<td>Dimensi Hausdorff</td>
<td>21</td>
</tr>
<tr>
<td>2.12</td>
<td>Ruang Metric (Metric Space)</td>
<td>21</td>
</tr>
<tr>
<td>2.13</td>
<td>Rekayasa Piranti Lunak</td>
<td>22</td>
</tr>
<tr>
<td>2.14</td>
<td>State Transition Diagram (STD)</td>
<td>23</td>
</tr>
<tr>
<td>2.15</td>
<td>Flowchart (diagram alir)</td>
<td>25</td>
</tr>
<tr>
<td>2.16</td>
<td>Penelitian Relevan</td>
<td>26</td>
</tr>
<tr>
<td>2.16.1</td>
<td>Penggunaan Kompresi Fractal</td>
<td>26</td>
</tr>
<tr>
<td>2.16.2</td>
<td>Penggunaan Aplikasi Kompresi Gambar</td>
<td>27</td>
</tr>
</tbody>
</table>
BAB 3 PERANCANGAN PROGRAM .. 29
3.1 Gambaran Umum Perancangan ... 29
3.2 Modul-modul Perancangan ... 32
 3.2.1 Modul Utama .. 33
 3.2.2 Modul Proses Compression ... 34
 3.2.3 Modul Proses Decompression 42
3.3 State Transition Diagram (STD) Perancangan 46
3.4 Rancangan Layar ... 47
 3.4.1 Rancangan Layar Utama .. 47
 3.4.2 Open .raw, .dat dan .FIC ... 47
 3.4.3 Save As .FIC .. 48
 3.4.4 Image viewer .. 48

BAB 4 IMPLEMENTASI DAN EVALUASI PERANCANGAN 49
4.1 Spesifikasi Hardware dan Software 49
4.2 Persiapan Data ... 50
4.3 Hasil Perancangan ... 50
 4.3.1 Kompresi ... 52
 4.3.1.1 Kompresi Gambar Fingerprint.raw 52
 4.3.1.2 Kompresi Gambar Lenna.raw 53
 4.3.1.3 Kompresi Gambar Mando.raw 54
 4.3.1.4 Kompresi Gambar Sam.raw............................ 55
 4.3.1.5 Kompresi Gambar San256.raw......................... 56
 4.3.1.6 Kompresi Gambar Image53.raw....................... 57
 4.3.2 Dekompresi ... 58
 4.3.2.1 Dekompresi Gambar Fingerprint.raw 58
 4.3.2.2 Dekompresi Gambar Lenna.raw 58
 4.3.2.3 Dekompresi Gambar Mando.raw 59
 4.3.2.4 Dekompresi Gambar Sam.raw.......................... 59
 4.3.2.5 Dekompresi Gambar San256.raw...................... 60
 4.3.2.6 Dekompresi Gambar Image53.raw.................... 60
4.4 Analisa Hasil Perancangan .. 61
4.5 Evaluasi Perancangan ... 62

BAB 5 KESIMPULAN DAN SARAN .. 64
5.1 Kesimpulan ... 64
5.2 Saran .. 65

DAFTAR PUSTAKA .. 66
RIWAYAT HIDUP .. 67
LAMPIRAN – Source Code Program ... L1
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Tabel</th>
<th>Deskripsi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Notasi Flowchart</td>
<td>26</td>
</tr>
<tr>
<td>4.1</td>
<td>Data gambar</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>Hasil perancangan</td>
<td>61</td>
</tr>
<tr>
<td>Gambar</td>
<td>Deskripsi</td>
<td>Halaman</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>2.1</td>
<td>Bentuk fractal sederhana</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Mandelbrot set</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Contoh instalasi fractal pada gedung</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Blok range (kiri) yang merupakan hasil pemetaan blok domain (kanan)</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Proses kompresi dan dekompresi sederhana</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>Kiri blok range parent, kanan blok range child</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>Quadtree sederhana</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>Diagram classic life cycle</td>
<td>23</td>
</tr>
<tr>
<td>2.9</td>
<td>Notasi modul</td>
<td>24</td>
</tr>
<tr>
<td>2.10</td>
<td>Notasi tampilan</td>
<td>24</td>
</tr>
<tr>
<td>2.11</td>
<td>Notasi tindakan</td>
<td>24</td>
</tr>
<tr>
<td>2.12</td>
<td>Notasi kondisi dan aksi</td>
<td>25</td>
</tr>
<tr>
<td>2.13</td>
<td>Contoh penggambaran kondisi dan aksi</td>
<td>25</td>
</tr>
<tr>
<td>2.14</td>
<td>(Kiri) gambar sidik jari asli.(kanan) gambar sidik jari terkompresi</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td>Diagram alir proses kompresi</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Diagram alir proses dekompresi</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>STD rancangan program</td>
<td>46</td>
</tr>
<tr>
<td>3.4</td>
<td>Rancangan layar utama</td>
<td>47</td>
</tr>
<tr>
<td>3.5</td>
<td>Rancangan layar open .raw., .dat, dan .FIC</td>
<td>47</td>
</tr>
<tr>
<td>3.6</td>
<td>Rancangan layar save as .FIC</td>
<td>48</td>
</tr>
<tr>
<td>3.7</td>
<td>Rancangan layar image viewer</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>Window utama</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>Layar open</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>Layar save</td>
<td>51</td>
</tr>
<tr>
<td>4.4</td>
<td>Gambar Fingerprint.raw</td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>Gambar hasil proses kompresi Fingerprint.raw</td>
<td>52</td>
</tr>
<tr>
<td>4.6</td>
<td>Gambar Lenna.raw</td>
<td>53</td>
</tr>
<tr>
<td>4.7</td>
<td>Gambar hasil proses kompresi Lenna.raw</td>
<td>53</td>
</tr>
<tr>
<td>4.8</td>
<td>Gambar Mando.raw</td>
<td>54</td>
</tr>
<tr>
<td>4.9</td>
<td>Gambar hasil proses kompresi Mando.raw</td>
<td>54</td>
</tr>
<tr>
<td>4.10</td>
<td>Gambar Sam.raw</td>
<td>55</td>
</tr>
<tr>
<td>4.11</td>
<td>Gambar hasil proses kompresi Sam.raw</td>
<td>55</td>
</tr>
<tr>
<td>4.12</td>
<td>Gambar San256.raw</td>
<td>56</td>
</tr>
<tr>
<td>4.13</td>
<td>Gambar hasil proses kompresi San256.raw</td>
<td>56</td>
</tr>
<tr>
<td>4.14</td>
<td>Gambar Image53.raw</td>
<td>57</td>
</tr>
<tr>
<td>4.15</td>
<td>Gambar hasil proses kompresi Image53.raw</td>
<td>57</td>
</tr>
<tr>
<td>4.16</td>
<td>Gambar hasil proses dekompresi Fingerprint.raw</td>
<td>58</td>
</tr>
<tr>
<td>4.17</td>
<td>Gambar hasil proses dekompresi Lenna.raw</td>
<td>58</td>
</tr>
<tr>
<td>4.18</td>
<td>Gambar hasil proses dekompresi MANDO.raw</td>
<td>59</td>
</tr>
</tbody>
</table>
Gambar 4.19 Gambar hasil proses dekompresi Sam.raw

Gambar 4.20 Gambar hasil proses dekompresi San256.raw

Gambar 4.21 Gambar hasil proses dekompresi Image53.raw