Pengenalan Wajah dengan Ekstraksi Kernel PCA dan Jaringan Saraf Tiruan

Backpropagation

Arif Hendrawan 0400484421
Hesadrian 0400485191
Tommy Octavianus 0400502424

Abstrak

Kata kunci : pengenalan pola, Kernel PCA, wajah, Backpropagation
PENGANTAR

Pertama kami ingin mengucapkan syukur pada Tuhan Yang Maha Esa atas rahmat-Nya, sehingga skripsi yang kami tulis, dapat diselesaikan dengan baik sebagai persyaratan dalam menyelesaikan jenjang studi Strata-1, Jurusan Teknik Informatika di Universitas Bina Nusantara, Jakarta.

Dengan selesainya skripsi ini, kami juga ingin mengucapkan terima kasih yang sedalam-dalamnya atas bantuan yang telah diberikan kepada kami selama proses penulisan skripsi, baik berupa materi, pemikiran, dorongan, bimbingan dan waktu. Ucapan terima kasih kami haturkan kepada:

1. Ibu Dr. Th. Widia S sebagai rektor universitas Bina Nusantara.
2. Ibu Anny Tandyo, M.Sc, sebagai dosen pembimbing kami yang banyak memberikan sumahg saran dan bimbingan dalam penulisan skripsi kami.
5. Orang tua kami dan saudara yang telah banyak memberikan dorongan moril.
6. Teman-teman yang telah banyak memberikan dukungan, masukan, dan doa.

Kami menyadari sepenuhnya bahwa masih terdapat kekurangan dalam penulisan skripsi ini, sehingga kami dengan senang hati menerima kritikan dan saran dari pembaca. Kami juga berharap semoga tulisan ini bermanfaat bagi pembacanya.

Penulis
DAFTAR ISI

<table>
<thead>
<tr>
<th>Bab</th>
<th>Judul</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Halaman Judul Dalam</td>
</tr>
<tr>
<td>0.6</td>
<td>Halaman Persetujuan Hardcover</td>
</tr>
<tr>
<td>0.7</td>
<td>Halaman Pernyataan Dewan Penguji</td>
</tr>
<tr>
<td>0.8</td>
<td>Abstrak</td>
</tr>
<tr>
<td>0.9</td>
<td>PENGANTAR</td>
</tr>
<tr>
<td>0.10</td>
<td>DAFTAR ISI</td>
</tr>
<tr>
<td>0.11</td>
<td>DAFTAR TABEL</td>
</tr>
<tr>
<td>0.12</td>
<td>DAFTAR GAMBAR</td>
</tr>
<tr>
<td>0.13</td>
<td>DAFTAR LAMPIRAN</td>
</tr>
<tr>
<td>1.1</td>
<td>BAB 1 PENDAHULUAN</td>
</tr>
<tr>
<td>1.2</td>
<td>1.1 Latar Belakang</td>
</tr>
<tr>
<td>1.3</td>
<td>1.2 Ruang Lingkup</td>
</tr>
<tr>
<td>1.4</td>
<td>1.3 Tujuan dan Manfaat</td>
</tr>
<tr>
<td>1.5</td>
<td>1.4 Metodologi</td>
</tr>
<tr>
<td>1.6</td>
<td>1.5 Sistematika Penulisan</td>
</tr>
<tr>
<td>2.1</td>
<td>BAB 2 LANDASAN TEORI</td>
</tr>
<tr>
<td>2.2</td>
<td>2.1 Sejarah Sistem Pengenalan Wajah</td>
</tr>
<tr>
<td>2.3</td>
<td>2.2 Metode Ekstraksi</td>
</tr>
<tr>
<td>2.4</td>
<td>2.2.1 Linear Discriminant Analysis</td>
</tr>
<tr>
<td>2.5</td>
<td>2.2.2 Principal Component Analysis</td>
</tr>
<tr>
<td>2.6</td>
<td>2.2.3 Kernel Principal Component Analysis</td>
</tr>
<tr>
<td>2.7</td>
<td>2.3 Jaringan Saraf Tiruan</td>
</tr>
<tr>
<td>2.8</td>
<td>2.3.1 Propagasi Balik</td>
</tr>
<tr>
<td>2.9</td>
<td>2.4 Teori Pendukung Lainnya</td>
</tr>
<tr>
<td>2.10</td>
<td>2.4.1 Teorema Mercer</td>
</tr>
<tr>
<td>2.11</td>
<td>2.4.2 Join Photographic Experts Group (JPEG)</td>
</tr>
<tr>
<td>2.12</td>
<td>2.4.3 Penelitian Sebelumnya</td>
</tr>
<tr>
<td>2.13</td>
<td>2.4.4 Metode Rekayasa Piranti Lunak</td>
</tr>
<tr>
<td>3.1</td>
<td>BAB 3 PERANCANGAN SISTEM</td>
</tr>
<tr>
<td>3.2</td>
<td>3.1 Gambaran Umum</td>
</tr>
<tr>
<td>3.3</td>
<td>3.2 Pengolahan Awal</td>
</tr>
<tr>
<td>3.4</td>
<td>3.3 Reduksi Dimensi</td>
</tr>
<tr>
<td>3.5</td>
<td>3.3.1 Pembentukan Kernel</td>
</tr>
<tr>
<td>3.6</td>
<td>3.3.2 Normalisasi Matriks Kernel</td>
</tr>
<tr>
<td>3.7</td>
<td>3.3.3 Perhitungan nilai eigen dan vektor eigen</td>
</tr>
<tr>
<td>3.8</td>
<td>3.3.4 Normalisasi vektor eigen</td>
</tr>
<tr>
<td>3.9</td>
<td>3.3.5 Perhitungan vektor principal component</td>
</tr>
<tr>
<td>3.10</td>
<td>3.4 Klasifikasi dengan Jaringan Saraf Tiruan</td>
</tr>
<tr>
<td>3.11</td>
<td>3.4.1 Tahap Pelatihan</td>
</tr>
<tr>
<td>3.12</td>
<td>3.4.2 Tahap Pengujian</td>
</tr>
<tr>
<td>3.13</td>
<td>3.5 Struktur Aplikasi</td>
</tr>
<tr>
<td>3.14</td>
<td>3.6 Rancangan Layar</td>
</tr>
<tr>
<td>4.1</td>
<td>BAB 4 EVALUASI</td>
</tr>
<tr>
<td>4.2</td>
<td>4.1 Spesifikasi Sistem</td>
</tr>
</tbody>
</table>
4.1.1 Spesifikasi Perangkat Keras .. 44
4.1.2 Spesifikasi Perangkat Lunak .. 44
4.2 Gambaran Aplikasi ... 44
4.3 Prosedur Evaluasi ... 49
 4.3.1 Evaluasi Hasil Percobaan Kombinasi Learn Rate dan Momentum ... 50
 4.3.2 Evaluasi Hasil Percobaan Konfigurasi JST ... 56
 4.3.3 Evaluasi Hasil Percobaan Batas Verifikasi ... 58
BAB 5 KESIMPULAN DAN SARAN .. 62
 5.1 Kesimpulan ... 62
 5.2 Saran ... 62
DAFTAR PUSTAKA ... 64
RIWAYAT HIDUP ... 66
LAMPIRAN ... L1
<table>
<thead>
<tr>
<th>Tabel</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Penelitian Skripsi tahun 2003 oleh Stephen Prayogo dan Aradia Wiyono</td>
<td>23</td>
</tr>
<tr>
<td>4.1</td>
<td>Konfigurasi Learning Rate = 0.1 dengan Berbagai Kombinasi Momentum</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>Konfigurasi Learning Rate = 0.2 dengan Berbagai Kombinasi Momentum</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>Konfigurasi Learning Rate = 0.3 dengan Berbagai Kombinasi Momentum</td>
<td>52</td>
</tr>
<tr>
<td>4.4</td>
<td>Konfigurasi Learning Rate = 0.4 dengan Berbagai Kombinasi Momentum</td>
<td>53</td>
</tr>
<tr>
<td>4.5</td>
<td>Konfigurasi Learning Rate = 0.5 dengan Berbagai Kombinasi Momentum</td>
<td>54</td>
</tr>
<tr>
<td>4.6</td>
<td>Konfigurasi Learning Rate = 0.6 dengan Berbagai Kombinasi Momentum</td>
<td>55</td>
</tr>
<tr>
<td>4.7</td>
<td>Evaluasi Kombinasi Learning Rate dan Momentum yang Optimal</td>
<td>56</td>
</tr>
<tr>
<td>4.8</td>
<td>Akurasi Pengenalan pada Konfigurasi Jumlah Hidden Node Antara 60 - 100</td>
<td>56</td>
</tr>
<tr>
<td>4.9</td>
<td>Akurasi Pengenalan pada Konfigurasi Jumlah Hidden Node Antara 60 - 180</td>
<td>57</td>
</tr>
<tr>
<td>4.10</td>
<td>Tingkat akurasi True Acceptance dengan batas verifikasi 60%</td>
<td>59</td>
</tr>
<tr>
<td>4.11</td>
<td>Tingkat akurasi True Rejection dengan batas verifikasi 60%</td>
<td>60</td>
</tr>
</tbody>
</table>
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Gambar</th>
<th>Deskripsi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gambar 2.1</td>
<td>Elemen-elemen Dasar node</td>
<td>13</td>
</tr>
<tr>
<td>Gambar 2.2</td>
<td>Fungsi Ambang Batas</td>
<td>14</td>
</tr>
<tr>
<td>Gambar 2.3</td>
<td>Fungsi Piecewise-Linear</td>
<td>14</td>
</tr>
<tr>
<td>Gambar 2.4</td>
<td>Fungsi Sigmoid</td>
<td>15</td>
</tr>
<tr>
<td>Gambar 2.5</td>
<td>Arsitektur JST dengan Layer Tunggal</td>
<td>16</td>
</tr>
<tr>
<td>Gambar 2.6</td>
<td>Arsitektur JST dengan Layer Banyak</td>
<td>17</td>
</tr>
<tr>
<td>Gambar 2.7</td>
<td>Grafik Perbandingan Tingkat Akurasi antara Kernel PCA dengan PCA 22</td>
<td></td>
</tr>
<tr>
<td>Gambar 2.8</td>
<td>Grafik Perbandingan Tingkat Akurasi Kernel PCA pada Derajat Polinomial yang Berbeda</td>
<td>22</td>
</tr>
<tr>
<td>Gambar 3.1</td>
<td>Diagram Alir Fase Pelatihan dan Fase Pengujuan dengan Tiga Tahap Proses Pengolahan Citra</td>
<td>23</td>
</tr>
<tr>
<td>Gambar 3.2</td>
<td>(a) Citra dengan Dimensi 3×3 Pixel yang Dihitung Intensitas Cahayanya. (b) Citra Wajah Tampak Depan Sebelum Mengalami Grayscale. (c) Citra Wajah yang Telah Mengalami Grayscale</td>
<td>26</td>
</tr>
<tr>
<td>Gambar 3.3</td>
<td>Aliran Proses Pemilihan Vektor Eigen</td>
<td>27</td>
</tr>
<tr>
<td>Gambar 3.4</td>
<td>Aliran Proses Perhitungan Vector Principal Component</td>
<td>28</td>
</tr>
<tr>
<td>Gambar 3.5</td>
<td>(a) Matriks Citra Masukan, dimana Vektor Xi Merepresentasikan Sebuah Citra Pelatihan, (b) Operasi Polinomial dengan Menggunakan Perkalian Dalam, (c) Matriks Kernel Polinomial K Hasil Serangkaian Operasi Polinomial</td>
<td>29</td>
</tr>
<tr>
<td>Gambar 3.6</td>
<td>(a) Matriks Vektor Eigen dengan Dimensi $n \times m$. (b) Vektor Nilai Eigen dengan Jumlah Elemen m</td>
<td>30</td>
</tr>
<tr>
<td>Gambar 3.7</td>
<td>Perhitungan Principal Component dengan Memproyeksisikan Matriks Vektor Eigen pada Matriks Kernel Penguian K</td>
<td>32</td>
</tr>
<tr>
<td>Gambar 3.8</td>
<td>Diagram Alir Tahap Pelatihan</td>
<td>33</td>
</tr>
<tr>
<td>Gambar 3.9</td>
<td>Diagram Alir Tahap Penguian</td>
<td>34</td>
</tr>
<tr>
<td>Gambar 3.10</td>
<td>Struktur Aplikasi</td>
<td>35</td>
</tr>
<tr>
<td>Gambar 3.11</td>
<td>Rancangan Layar Utama</td>
<td>36</td>
</tr>
<tr>
<td>Gambar 3.12</td>
<td>Rancangan Menu</td>
<td>37</td>
</tr>
<tr>
<td>Gambar 3.13</td>
<td>Rancangan Layar Field Direktori Citra Pelatihan</td>
<td>38</td>
</tr>
<tr>
<td>Gambar 3.14</td>
<td>Rancangan Layar untuk Field Konfigurasi Hidden Layer</td>
<td>39</td>
</tr>
<tr>
<td>Gambar 3.15</td>
<td>Rancangan Layar Field Konfigurasi JST</td>
<td>40</td>
</tr>
<tr>
<td>Gambar 3.16</td>
<td>Rancangan Layar Status Pelatihan</td>
<td>41</td>
</tr>
<tr>
<td>Gambar 3.17</td>
<td>Rancangan Layar Penguian</td>
<td>42</td>
</tr>
<tr>
<td>Gambar 4.1</td>
<td>Tampilan Layar Menu Utama</td>
<td>43</td>
</tr>
<tr>
<td>Gambar 4.2</td>
<td>Tampilan Layar Penilitan Direktori Pelatihan</td>
<td>44</td>
</tr>
<tr>
<td>Gambar 4.3</td>
<td>Tampilan Layar Konfigurasi Jumlah Hidden Node</td>
<td>45</td>
</tr>
<tr>
<td>Gambar 4.4</td>
<td>Tampilan Layar Konfigurasi Jaringan</td>
<td>46</td>
</tr>
<tr>
<td>Gambar 4.5</td>
<td>Tampilan Layar Pelatihan</td>
<td>47</td>
</tr>
<tr>
<td>Gambar 4.6</td>
<td>Tampilan Layar Penguian</td>
<td>48</td>
</tr>
<tr>
<td>Gambar 4.7</td>
<td>Grafik Kombinasi Momentum dengan Learning Rate = 0.1</td>
<td>49</td>
</tr>
</tbody>
</table>
Gambar 4.8 Grafik Kombinasi Momentum dengan Learning Rate = 0.2..................51
Gambar 4.9 Grafik Kombinasi Momentum dengan Learning Rate = 0.3..................52
Gambar 4.10 Grafik Kombinasi Momentum dengan Learning Rate = 0.4..................53
Gambar 4.11 Grafik Kombinasi Momentum dengan Learning Rate = 0.5..................54
Gambar 4.12 Grafik Kombinasi Momentum dengan Learning Rate = 0.6..................55
Gambar 4.13 Grafik Perbandingan Akurasi Pengenalan Beberapa Konfigurasi JST....57
Gambar 4.14 Grafik Perbandingan Akurasi Pengenalan Beberapa Konfigurasi JST....58
Gambar 4.15 Grafik Perbandingan True Acceptance pada Beberapa Konfigurasi JST 59
Gambar 4.16 Grafik Perbandingan True Rejection pada Beberapa Konfigurasi JST....60
DAFTAR LAMPIRAN

A. Citra Wajah Masukan Pelatihan .. L1
B. Citra Wajah Masukan Pengujian 1 ... L5
C. Citra Wajah Pengujian 2 ... L9
D. Listing Program .. L13