IMPLEMENTASI FSM BASED PLC SEBAGAI PENGENDALI PROTOTIPE
MESIN PENCUCI MOBIL OTOMATIS

HERMAN HAKIM 0400522893
KURNIAWAN alias KU CUNG WEI 0400521410
RONALD OCTAVIANUS 0400521322

Abstrak
Tujuan penelitian ini adalah untuk membuktikan bahwa FSM based PLC (Finite State Machine based Programmable Logic Controller) dapat menjadi pengendali alternatif selain PLC. Metode penelitian dilakukan dengan metode analisis dan metode perancangan. Metode analisis dilakukan dengan menganalisa informasi yang diperoleh dari hasil survei. Metode perancangan dilakukan dengan merancang perangkat keras dan piranti lunak. Hasil yang diperoleh dalam skripsi ini adalah FSM based PLC dapat mengendalikan sebuah prototipe mesin pencuci mobil otomatis. Jadi, FSM based PLC dapat digunakan sebagai unit pengendali alternatif selain PLC, dimana unit yang dikendalikan memiliki state-state tertentu dan terbatas.

Kata kunci
FSM, PLC, FSM BASED PLC, Mesin pencuci mobil otomatis
Puji syukur ke hadirat Tuhan Yang Maha Kuasa, atas selesainya skripsi yang berjudul “Implementasi FSM based PLC sebagai Pengendali Prototipe Mesin Pencuci Mobil Otomatis”. Skripsi ini disusun sebagai salah satu syarat untuk meraih gelar kesarjanaan jenjang studi Strata-1 (S1) pada jurusan Sistem Komputer Universitas Bina Nusantara, Jakarta.

Banyak bantuan dan dorongan moril yang diberikan oleh berbagai pihak kepada penulis selama menyelesaikan skripsi ini. Oleh karena itu, dalam kesempatan ini, penulis ingin menyampaikan terima kasih kepada :

- Orang tua kami yang telah banyak memberikan dukungan, baik berupa material maupun spiritual.
- Rektor Universitas Bina Nusantara, Ibu Ir. Theresia Widia Suryaningsih, M.M.
- Dosen pembimbing, Bapak Drs. Jusuf Bintoro, M.T., atas bimbingan dan bantuannya selama penyusun skripsi ini berlangsung.
- Kepala Jurusan Sistem Komputer, Bapak Iman H. Kartowisastro
- Sekretaris Jurusan Sistem Komputer, Bapak Robby Saleh, S.Kom, yang telah memberi saran dan bimbingan.
• Bapak Sarmin dari Modern1 atas kesempatan waktu dan tempat bagi penelitian ini.

• Teman kami, Helan Tjong, yang telah membantu dalam pembuatan 3D model dari aplikasi dalam skripsi ini.

• Dan pihak-pihak lain yang tidak dapat penulis sebutkan satu persatu.

Penulis menyadari bahwa skripsi ini belum sempurna, namun penulis berharap karya tulis ini dapat bermanfaat bagi pembaca serta dapat dikembangkan lagi ke arah yang lebih sempurna. Saran dan kritik yang membangun dari pembaca sangat diharapkan untuk penyempurnaannya di masa mendatang.

Terima Kasih.

Jakarta, Juli 2004

Penulis
Daftar Isi

Halaman Judul Luar ...i
Halaman Judul Dalam ... ii
Halaman Persetujuan Hardcover .. iii
Halaman Pernyataan Dewan Penguji ...iv
Abstrak ... vii
Prakata ... viii
Daftar Isi ... x
Daftar Tabel ...xiv
Daftar Gambar..xvi
Daftar Lampiran ..xix

BAB 1 PENDAHULUAN... 1

1.1 Latar Belakang .. 1
1.2 Ruang Lingkup .. 2
1.3 Tujuan dan Manfaat ... 2
1.4 Metodologi .. 3
1.5 Sistematika Penulisan .. 3

BAB 2 LANDASAN TEORI... 5

2.1 Programable Logic Controller (PLC) .. 5

2.1.1 Arsitektur PLC .. 6
2.1.2 Komponen Internal PLC .. 6
2.1.3 Operasi PLC .. 8
2.2 Finite State Machine (FSM) ... 10
 2.2.1 Model Mealy .. 11
 2.2.2 Model Moore... 13

2.3 ASM Chart ... 14

2.4 FSM based PLC (Finite State Machine based Programmable Logic Controller) ... 19

2.5 Relay ... 20
 2.5.1 Kontak (Contact).. 23

2.6 Motor ... 24
 2.6.1 Motor Stepper .. 24
 2.6.2 Motor DC ... 27

2.6. Photodioda .. 29

BAB 3 PERANCANGAN SISTEM ... 31

3.1 Rancangan Perangkat Keras... 31
 3.1.1 Modul FSM Based PLC.. 32
 3.1.2 Modul Infra Merah (Transmitter) Program Utama dan Motor Stepper ... 36
 3.1.3 Modul Photodioda... 37
 3.1.4 Modul Pengendali Motor Stepper .. 39
 3.1.5 Modul Relay... 42
 3.1.6 Modul Pengendali motor DC .. 44

3.2 Rancangan Piranti Lunak ... 44
 3.2.1 Pemrograman FSM based PLC... 45
 3.2.2 Diagram Blok dan Tabel Sistem Pencuci Mobil Otomatis 49
3.3 Rancang Bangun ...76

3.3.1 Sikat tegak ...76
3.3.2 Sikat samping ...77
3.3.3 Sikat naik turun ..78
3.3.4 Blower ...79
3.3.5 Susunan Komponen Pencucian ..80
3.3.6 Sistem Pencuci Keseluruhan ..81

BAB 4 IMPLEMENTASI DAN EVALUASI ...82

4.1 Spesifikasi FSM based PLC ..82
4.2 Spesifikasi Prototipe Mesin Pencuci Mobil Otomatis82
4.3 Spesifikasi Kotak Pengendali Mesin Pencuci Mobil Otomatis83
4.4 Prosedur Pengoperasian Sistem ..83
4.5 Prosedur Pencucian Mobil ...84
 4.5.1 Prosedur mesin pencuci mobil otomatis bila 1 mobil masuk84
4.6 Analisa Sistem ...87
 4.6.1 Pengujian Modul FSM based PLC87
 4.6.2 Pengujian Modul Sensor ..90
 4.6.3 Pengujian Modul Relay ...95
 4.6.4 Pengujian Catu Daya ...95
 4.6.5 Pengujian Kehandalan Sistem ...98

BAB 5 KESIMPULAN dan SARAN ..99

5.1 Kesimpulan ..99
5.2 Saran ...100

DAFTAR PUSTAKA ...101
RIWAYAT HIDUP ...102
LAMPIRAN.. L1 - 1
FOTOCOPY SURAT SURVEI
Daftar Tabel

Tabel 3.1. *State Transition Diagram* untuk antrian 1 mobil masuk...............................50
Tabel 3.2. *State Transition Diagram* untuk antrian 2 mobil masuk...............................52
Tabel 3.3. *State Transition Diagram* untuk antrian 3 mobil masuk...............................54
Tabel 3.4. *State Transition Diagram* untuk antrian 4 mobil masuk...............................56
Tabel 3.5. *State Transition Diagram* untuk antrian mobil masuk dengan bentuk antrian
0 ... 0..58
Tabel 3.6. *State Transition Diagram* untuk antrian mobil masuk dengan bentuk antrian
00 ... 0...60
Tabel 3.7. *State Transition Diagram* untuk antrian mobil masuk dengan bentuk 0 ... 00
...62
Tabel 3.8. *State Transition Diagram* untuk antrian mobil masuk dengan bentuk antrian
0 0..64
Tabel 3.9. *State Transition Diagram* untuk antrian mobil masuk dengan bentuk antrian
00 0..66
Tabel 3.10. *State Transition Diagram* untuk antrian mobil masuk dengan bentuk
antrian 0 00...68
Tabel 3.11. *State Transition Diagram* untuk antrian mobil masuk dengan bentuk
antrian 0 0..70
Tabel 3.12. Sikat dan blower naik-turun...73
Tabel 4.1. Tegangan Keluaran Modul Sensor pada saat normal.................................91
Tabel 4.2. Tegangan Keluaran Modul Sensor pada saat ada matahari93
Tabel 4.3. Tegangan keluaran modul sensor pada saat ada air ...93
Tabel 4.4. Pengukuran catu daya modul sensor ..96
Tabel 4.5. Pengukuran tegangan yang jatuh pada kabel ..96
Tabel 4.6. Tegangan motor DC ..97
Tabel 4.7. Tegangan motor stepper ...97
Tabel 4.8. Hasil pengujian kehandalan ...98
Daftar Gambar

Gambar 2.1. Elemen-elemen dasar PLC ...6
Gambar 2.2. Komponen PLC ..7
Gambar 2.3. Siklus penelusuran PLC ...9
Gambar 2.4. Diagram blok model Mealy ..11
Gambar 2.5. State transition diagram model Mealy ..12
Gambar 2.6. Diagram blok model Moore ..13
Gambar 2.7. State transition diagram model Moore ..13
Gambar 2.8. State Box ...15
Gambar 2.9. Scalar Decision Box ...16
Gambar 2.10. Conditional Output Box ...17
Gambar 2.11. Vector Decision Box ..17
Gambar 2.12. ASM Chart model Moore ..18
Gambar 2.13. ASM Chart model Mealy ...19
Gambar 2.14. Bagian dalam Relay ..21
Gambar 2.15. Rangkaian relay sederhana ..21
Gambar 2.16. Kumparan pada motor stepper ...24
Gambar 2.17. Konsep kerja motor stepper ..25
Gambar 2.18. Pola perpindahan tegangan positif dan Ground pada motor stepper unipolar ...26
Gambar 2.19. Skematik motor stepper unipolar ...26
Gambar 2.20. Bentuk motor DC ..27
Gambar 2.21. Tutup nilon motor DC ...28
Gambar 2.22. Bagian *Commutator* dan *Armature* ..28
Gambar 2.23. Bagian medan magnet ...29
Gambar 2.24. Photodioda ..29
Gambar 3.1. Diagram blok sistem ...31
Gambar 3.2. Diagram blok FSM based PLC ..33
Gambar 3.3. Modul inframerah (*Transmitter*) ..36
Gambar 3.4. Modul Photodioda (*Receiver*) ..38
Gambar 3.5. Modul pengendali motor *stepper* ...40
Gambar 3.6. *Timing* diagram IC SN74194 ..41
Gambar 3.7. Modul *Relay* ...42
Gambar 3.8. Modul pengendali motor DC ...44
Gambar 3.9. *State Transition Diagram* mesin pencuci mobil otomatis49
Gambar 3.10. Sikat Tegak ..76
Gambar 3.11. Sikat Tegak (perspektif) ...76
Gambar 3.12. Sikat samping ...77
Gambar 3.13. Sikat samping (perspektif) ...77
Gambar 3.14. Sikat naik turun ...78
Gambar 3.15. Sikat naik turun (perspektif) ...78
Gambar 3.16. Blower ..79
Gambar 3.17. Blower (perspektif) ...79
Gambar 3.18. Susunan komponen pencucian (perspektif)80
Gambar 3.19. Susunan komponen pencucian (depan)80
Gambar 3.20. Sistem Pencuci Keseluruhan (perspektif)81
Gambar 3. 21. Sistem Pencuci Keseluruhan (depan)...81

Gambar 4. 1. Diagram waktu 4 mobil masuk ke mesin pencuci mobil otomatis86

Gambar 4. 2. State Transition Diagram untuk antrian 1 mobil masuk saat diimplementasikan ...88

Gambar 4. 3. Resistor pembatas arus..92

Gambar 4. 4. Susunan Sensor ..94
Daftar Lampiran

1. **Source Code**
 - 1.1 Source Code EPROM-1 (Program Utama) L1 – 1
 - 1.2 Source Code EPROM-2 (Program Motor Stepper) L2 – 5

2. **Gambar Sistem Hasil Implementasi** L3 – 8

3. **Data Sheet** L4 – 12
 - SN54HCT74, SN74HCT74 L4 – 12
 - SN54 / 74LS32 L4 – 17
 - FM27C256 L4 – 19
 - SN54HC132, SN74HC732 L4 – 29
 - SN54 / 74LS194A L4 – 34
 - HD74HC564 / HD74HC574 L4 – 44
 - LM78XX L4 – 54
 - LM317 L4 – 62